

Clara

Oxygen carrier selection for chemical looping gasification of biomass based on the results of continuously operated units in the kW-range

WP 3: "Chemical-Looping Gasification"

CLARA workshop- April 2021

Chemical looping gasification (CLG)

Oxygen carriers:

- 1. Availability at multi-ton scale
- 2. Pretreatment of raw materials before using in CLG
- 3. Capability to convert biomass to gases products
- 4. Propensities to convert methane
- 5. Selectivity towards CO and H₂
- 6. Syngas yield
- 7. Ability for reducing tar formation
- 8. Attrition behavior and lifetime
- 9. Cost

- The objective of WP3 is to establish the viability of the CLG process.
 Specific aims:
 - Determine the functionality of several promising OC materials at CLG conditions.
 - Determine the fate of condensable tar species using selected OCs.
 - Determine **kinetics of char conversion** and **gas reactivity** with selected OCs.
 - Develop models of the two largest CLG reactors to be used for scale-up to industrial plants.

Task 3.1 Investigation of potential OC for Chemical Looping Gasification

Preselection of oxygen carriers

- Materials that can be sourced at multi-ton scale
- TGA, batch reactors and 300 W continuous unit
- Behavior with volatiles and syngas combustion

6

Elemental Composition	Moanda- Gabon	Wessels (South Africa)	Sibelco	Egyptian Ore	Tierga	Ilmenite	LD slag
(wt%)	Mn ore	Mn ore	Mn ore	Mn-Fe ore	Fe ore	Fe-Ti ore	Fe waste
Mn	46.7	39.8	49.9	32.3	0.05	0.2	2.2
Fe	5.1	14.6	5.2	21.6	54.9	33.1	13.7
Si	4.2	3.3	3.4	4.7	3.8	0.9	4.8
AI	3.8	0.2	4.2	1.2	2.1	0.3	0.5
Са	-	-	1.9	1.7	-	0.2	27.3
	Oxygen Carrier per ormance						
R _{oc} (%)	5.0	4.7	4.7	4.1	2.5	5.0	0.46
RI _{CH4} /RI _{H2}	0.14	0.07	0.22	0.30	0.27	0.63	0.35
AJI index (%)	16.8	5.5	1.6	8.8	6.3	2.4	4.6

Task 3.2 Investigation of fate of tar surrogates with OC materials

Conversion of tar species with the selected OCs:

- Partial oxidation through transfer of oxygen from OCs
- Catalytic and thermal cracking/reforming on the surface of OC

Introduction

Task 3.3 Testing of oxygen carriers in continuous operation

Selected oxygen carriers are investigated in continuous operation using solid biomass fuels in the 1.5 kW_{th} reactor at CSIC and 10 kW_{th} reactor at CTH.

- Decreasing the oxygen provided to FR by controlling the OC circulation rate
- The control of the oxygen transfer rate by using typical CLC oxygen carriers diluted with an inert (i.e. olivine or sand).
- Feeding the amount of oxygen, required in the FR for syngas production, into the AR.

Operation parameter	Unit	Oxygen carrier
Oxygen carriers		Ilmenite, LD slag, Elwaleed B, Silica Sand
Biomass		Pine forest residue, Straw pellets, Black pellets
Temperature	°C	820 - 970
Steamt to biomass ratio	kg/kg _{drybiomass}	0.8 - 1.9
Oxygen to fuel ratio (λ)	mol/mol	0.1 - 0.7
	FR flue gas Water Seal Air Reactor (AR)	AR Chinney Filtered AR flue gas oper posed Filtered AR Filters Filteres Filter

CHALMERS UNIVERSITY OF TECHNOLOGY

Operation parameter	Unit	Oxygen carrier
Oxygen carriers		Ilmenite, LD slag, Tierga, Moanda Mn ore
Biomass		Pine forest residue
Temperature	°C	820 - 940
Steamt to biomass ratio	kg/kg _{drybiomass}	0 - 06
Oxygen to fuel ratio (λ)	mol/mol	0.15 - 0.5

Biomass conversion

 $X_b = \frac{\text{carbon in gases from FR and AR}}{\text{carbon in biomass}}$

Syngas yield and H₂/CO ratio

 $Y = \frac{\text{flow of H}_2 + \text{CO from FR (mol/h)}}{\text{biomass feeding rate (kg/h)}}$

Carbon conversion efficiency

(carbon capture in CLC)

 $\eta_{cc} = \frac{\text{carbon converted to gas in the FR}}{\text{carbon in biomass}}$

Cold gas efficiency

 $\eta_g = \frac{\text{chemical energy in gases FR (kJ/h)}}{\text{energy in biomass (kJ/h)}}$

CLG with different biomass

	Straw Pellets (Straw)	Pine forest residue (PFR)	Black wood pellets (BP)
Moisture	8.8	8.0	6.9
Ashes	7.9	0.4	0.3
Volatile matter	75.0	77.8	74.2
Fixed carbon	8.3	13.8	18.7

Ilmenite, S/B=0.95, λ= 0.2, T=870

Effects of operating parameters

CHALMERS

Comparison of OCs' performance

CHALMERS

CHALMERS UNIVERSITY OF TECHNOLOGY

Ilmenite and LD slag: CSIC and CTH

		Oxygen Carrier				
Gas	Unit	СТН		CSIC		
composition		S/B=0.95, T=970ºC, λ=0.2, Fuel=PFR		S/B=0.6, T=950ºC, λ=0.35, Fuel=PFR		
		Ilmenite	LD slag	Ilmenite	LD slag	
CO ₂	%vol	37	35	41.5	38.1	
СО	%vol	22	20	21.1	23.1	
H ₂	%vol	29	34	23.6	29.5	
CH ₄	%vol	8	8	10.2	8.1	
C ₂ -C ₃	%vol	4	3	3.4	1.2	
Biomass	%	93	95	98.9	97	
H_2/CO	-	1.5	1.7	1.1	1.3	
Syngas yield, Y	m ³ /kg dry biomass	0.65	0.71	0.53	0.70	
Tar	g/Nm³	8-18	3-8	1-2	2-3	
Lifetime	hour	850	800	630	275	
Cost	USD/Ton	200	-	200	-	

Air Pesetor	Syndas	Operating condition	ons	
exhaust gas N ₂ Solids valves for circulation measurement	H ₂ , CO, CH ₄ , H ₂ O, CO ₂	T= 980 °C		
		λ= 0.3		
Solids reservoir		S/B= 0.7		
Loop Seal (LS-D)	Fuel Reactor	Gas composition	Gas composition (vol%)	
Air Reactor (AR)	N_2 Sec. flow	CO ₂	27.4	
Loop Seal (LS-CS) Carbon Loop Seal Stripper (LS-AF)	Biomass	CO	23.3	
		H ₂	38.3	
	Screw feeders	CH_4	9.8	
		C2-C3	1.3	
$N_2/O_2(air)$ N_2 H_2O/N_2 N_2 N_2 N_2	H_2O N_2	Syngas yield, Y	0.61	

- 30 h of continuous CLG operation with ilmenite and Wheat Straw pellets with additives
- Investigated the effect of the main operating variables (λ , T, S/B)
- Product gas also contains CH₄ concentrations around 8 vol %.

• No agglomeration was found during continuous CLG operation

Outcomes

- Six iron and manganese ores and one by-product from the steel industry had been preselected as oxygen carriers for CLG
- □ A total number of 300 hours experiments has been done in a prescreening step
- More than 600 hours of continuous CLG operation have been carried out at steady state using five oxygen carriers
- The tests demonstrated that it is possible to obtain a high purity syngas, with low tar production with the ores and wastes tested.
- ➡ High hydrocarbons contents were found, especially CH₄, where values up to 10% are usual.
- □ The highest syngas yield was obtained with LD slag and ilmenite.
- Tar concentration was lower than conventional steam gasification.
- Lifetime of oxygen carriers is lower than that found in combustion conditions for the same oxygen carrier. Best extrapolated lifetime was found for ilmenite.
- LD slag and ilmenite are considered as the best performance oxygen carriers for CLG

Thanks for your attention

