

Energy Systems and Technology Prof. Dr.-Ing. B. Epple

Otto-Berndt-Str. 2 64287 Darmstadt / Germany Phone: +49 6151 16 23002 www.est.tu-darmstadt.de

UNIVERSITÄT DARMSTADT

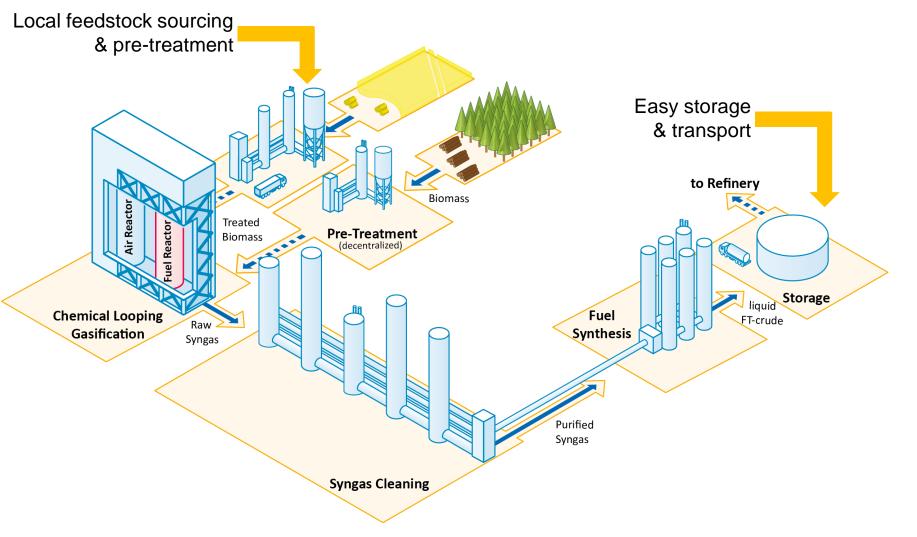
(Lara

Preparation of a 1 MW_{th} pilot plant for fullchain 2nd generation biofuel production tests based on chemical looping gasification

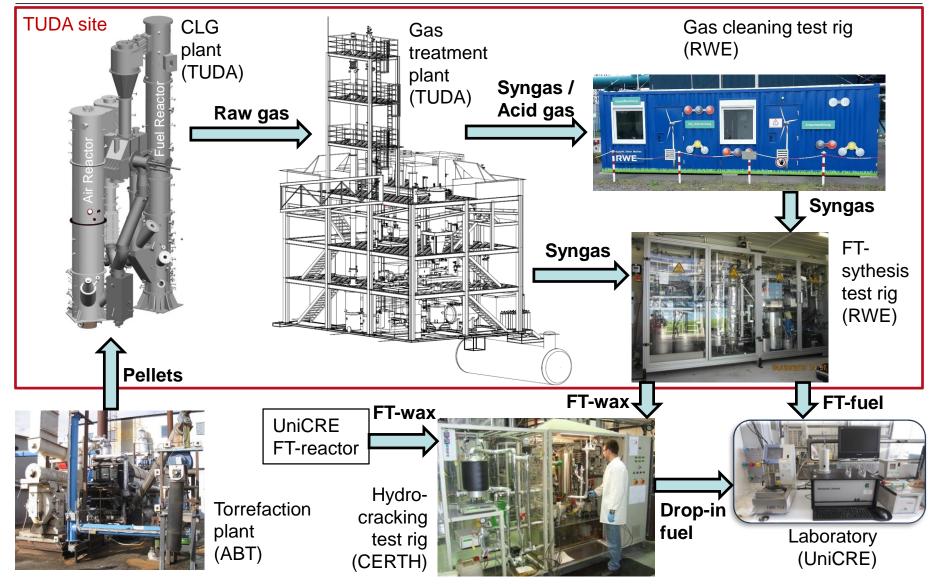
F. Marx, P. Dieringer, J. Ströhle, B. Epple

CLARA – Public Workshop 22 April 2021

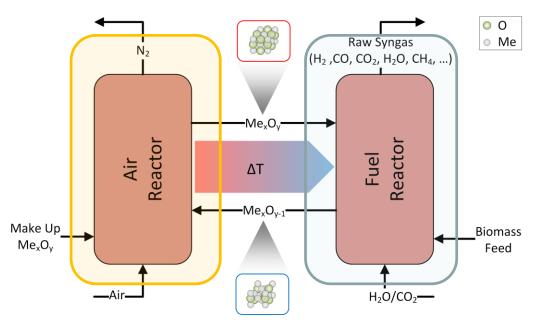




Concept


Cost competitive and environmentally compatible fuels for road transport

Full-Chain Pilot Testing


TECHNISCHE UNIVERSITÄT DARMSTADT

Chemical Looping Gasification (CLG) -Reactions

- Fuel Reactor (T~900 950 °C)
 - Gasification of biomass char
 - $C + CO_2 \rightarrow 2 CO$
 - $C + H_2 O \rightarrow CO + H_2$
 - Heterogeneous Me_xO_y gas reactions
 - Tar cracking
 - Steam methane reforming
 CH₄ + H₂O ↔ 3H₂ + CO
 - Water gas shift reaction $CO + H_2O \leftrightarrow H_2 + CO_2$
 - Air Reactor (T~1000 1050 °C)
 - re-oxidation of oxygen carrier $Me_xO_{v-1} + 0.5 O_2 \rightarrow Me_xO_v$
 - Combustion of unconverted char C+ 0₂→ C0₂

Required energy must be provided by re-oxidation of oxygen carrier

Chemical Looping Gasification (CLG) – TECHNISCHE Lara UNIVERSITÄT Experimental Setup – 1 MW_{th} DARMSTADT Two coupled circulating fluidized bed reactors (FR, AR) Good heat & mass transfer characteristics Operation experience in chemical looping combustion L-valve for control of global solid circulation No external electrical reactor heating \rightarrow Autothermal to Combustion Fuel Reacto Gas Analysis Gas Analysis Chamber to Syngas Reacto Cyclone Cyclone Make-Up OC Sand Air Reactor Reactor Fuel Air Biomass Feed Me_xO_{y-1} Propane--Air-I>>> -Propane-Me_xO_v L-Valve -D-Air CO_2 Steam Generato

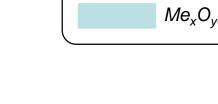
Falko Marx, CLARA — Chemical Looping gAsification foR sustainAble production of biofuels, Public Workshop

Chemical Looping Gasification (CLG) – Materials

Chara

- Oxygen carrier
 - Oxygen transport capacity
 - Thermodynamic suitability
 - High reactivity
 - Stability
 - Carbon deposition
 - Fluidization properties
 - Cost
 - Toxicity
 - Catalytic properties
 - Availability

- Biomass feed stock
 - Wood pellets
 - Pine forest residues
 - Wheat straw pellets


Falko Marx, CLARA — Chemical Looping gAsification foR sustainAble production of biofuels, Public Workshop

Chemical Looping Gasification (CLG) – Process Control

- Approach: Operation of air reactor in O₂ deficient atmosphere
- > Oxygen availability in fuel reactor controlled through air supply
 - AR:
 - Advantages:
 - One material
 - Independent control of heat and oxygen transport

FR:

- Catalytic activity of reduced oxygen carrier
- Easy to implement
- Fast to respond to changes
- Challenges
 - Air reactor fluidization and discharge
 - Attrition at low oxidization levels
 - Char combustion in oxygen deficient air reactor
 - > Not a Problem: Char conversion favoured over OC oxidation

(Lara

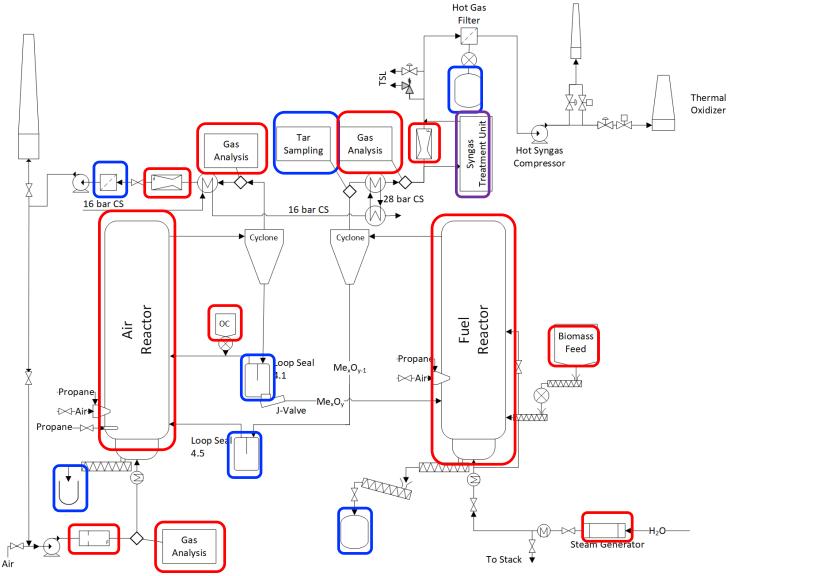
TECHNISCHE

UNIVERSITÄT

DARMSTADT

 $Me_{x}O_{y}$

Chemical Looping Gasification (CLG) – Process Design



- Fuel: Wood pellets
- Oxygen carrier: Ilmenite
- Thermal design of 1 MW_{th} (Cooling system)
- Process control strategy: Limitation of oxygen inside air reactor
- Heat and mass balances
- ✓ CLG feasible in the existing pilot plant
- Major increase in syngas handling equipment needed
- Minor changes for air reactor
- Side stream for cleaning (250 m³/h) and fuel synthesis (5 m³/h)

Chemical Looping Gasification (CLG) – Plant Design

Falko Marx, CLARA — Chemical Looping gAsification foR sustainAble production of biofuels, Public Workshop

TECHNISCHE

UNIVERSITÄT

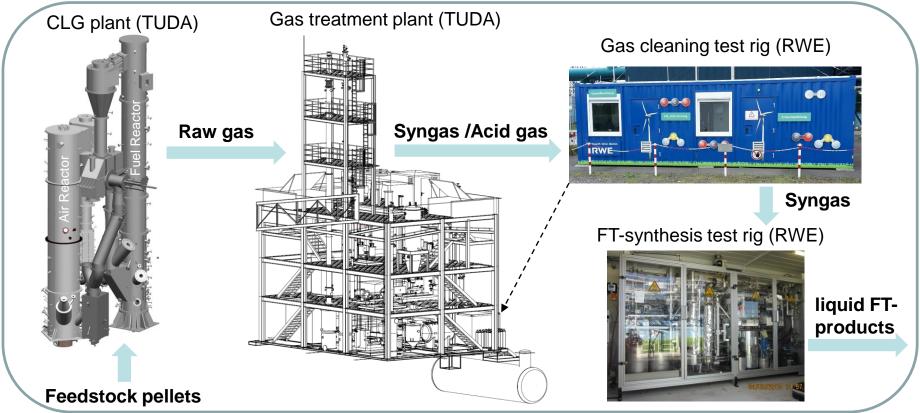
DARMSTADT

Chara

▷P_{th} as high as safely possible

 $ightarrow \Delta p$ (reactor inventory) as high as limited by reactor hydrodynamic

cg: cold gas \$\phi\$: oxygen carrier to fuel equivalence ratio



Summary & Outlook

- Design of autothermal pilot plant for CLG
- Process control can be achieved via G_s , P_{th} , ϕ
- Key performance indicators: η_{cg} , η_{cc} , x_{SG} , syngas quality (tars, CH₄)
- Full process chain with real syngas can be experimentally investigated

This project has received funding from the European Union's Horizon 2020 research and innovation programme

under grant agreement No 817841: Chemical Looping gAsification foR sustainAble production of biofuels (CLARA).

Thank you for your attention!

TECHNISCHE UNIVERSITÄT DARMSTADT

Falko Marx, CLARA — Chemical Looping gAsification foR sustainAble production of biofuels, Public Workshop