

## Chemical Looping Gasification for Sustainable Production of Biofuels

H2020 Research and Innovation action Grant Agreement no 817841

# **Deliverable D6.4:**

# Technology Risk Assessment

| Version No.:                    | 1          |
|---------------------------------|------------|
| Dissemination level:            | Public     |
| Due date of deliverable:        | 2023-04-30 |
| Submission date to coordinator: | 2023-04-30 |
| Actual submission date:         | 2023-04-14 |
| Actual submission date.         | 2023-04-14 |
| Start date of project:          | 2018-11-01 |
| End date of project:            | 2023-04-30 |
|                                 |            |

- Author(s): C. Aichernig<sup>1</sup>, H. Tremmel<sup>1</sup>, Frank Buschsieweke<sup>2</sup>, Ibai Funcia Muguerza<sup>3</sup>, Paul Dieringer<sup>4</sup>
- Affiliation: <sup>1</sup>Aichernig Engineering GmbH, <sup>2</sup>RWE Power AG, <sup>3</sup>Fundation CENER, <sup>4</sup>TU Darmstadt



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 817841.

## **Table of Contents**

| 1. | Introduction | 3 |
|----|--------------|---|
| 2. | Methods      | 3 |
| 3. | Risk Table   | 3 |
| 4. | Conclusions  | 4 |
| 5. | Disclaimer   | 4 |

#### 1. Introduction

The overall objective of WP6 is the assessment of risks related to health, safety, environment, society, technology and economics for the full biomass-to-end-use process chain using technologies developed in the CLARA project and to propose actions for risk mitigation. Task 6.4 is dealing with technology risks.

#### 2. Methods

Regarding technology risks AE set up a draft risk table covering the whole technology chain from the biomass preparation to the product separation as a starting point.

Each section of the plant was introduced. Possible technology risks were discussed and classified regarding their severeness and probability. Finally, mitigation measures were proposed.

The risk table was presented and discussed at the General Assembly Meeting in Thessaloniki in November 2022. After the Meeting the draft was sent out to all partners to comment and complete the draft. As result, the final risk table was fixed and is the central content of the D6.4.

The assessment of the full-chain process has been done for the following sections, leading partner in brackets:

P Feedstock Pre-Treatment (CENER)

G Chemical Looping Gasification (AE, TUDA)

C Syngas Cleaning (TUDA, RWE)

S Fischer-Tropsch Synthesis (AE, RWE)

| 3. Risk | <b>Fable</b> |
|---------|--------------|
|---------|--------------|

| no          | Description                                                       | likelihood | severity | likelihood x severity | Mitigation                                                                 |
|-------------|-------------------------------------------------------------------|------------|----------|-----------------------|----------------------------------------------------------------------------|
| P1          | Presence of undesirable (stones, metalic elements)                | 3          | 1        | 3                     | Passive elements: sieves and magnets before mixer                          |
| P2          | Constant water content not reached                                | 1          | 1        | 1                     | Mixing of feedstock after preparation                                      |
| P3          | Blockage of feeding lines and/or tend to bridging                 | 2          | 2        | 4                     | Spin reverser (feeding screws), vibrating elements and intermediate silos  |
| P4          | Pelletizer blockage                                               | 2          | 2        | 4                     | Stock milled biomass mixed with grease                                     |
| G1          | Insufficient bed material circulation                             | 2          | 2        | 4                     | Increase velocity in the air reactor, optimize geometry/layout of J-Valve  |
| G2          | Blockage in feeding system                                        | 1          | 2        | 2                     | Redundant feeding system; Quality control of pellets                       |
| G3          | Insufficient Oxygen transport                                     | 1          | 2        | 2                     | Change Oxygen carrier                                                      |
| G4          | Incomplete gasification                                           | 2          | 2        | 4                     | Change Oxygen carrier; additives; increase temperature                     |
| G5          | Bed material agglomeration                                        | 2          | 1        | 2                     | Additives; change feedstock; decrease temperature                          |
| G6          | Blocking of syngas cooler                                         | 2          | 2        | 4                     | Change feedstock; additives; change cooler design                          |
| G7          | Large material losses> high required make-up rates                | 1          | 2        | 2                     | Optimize cyclone(s), material recycle from filters/gas coolers             |
| C1          | Blocking of syngas filter                                         | 3          | 1        | 3                     | Increase filtration temperature; use pre-coating material                  |
| C2          | Blocking of syngas srubber                                        | 2          | 2        | 4                     | Change scrubber design; change scrubbing liquid                            |
| C3          | Sulphur-poisoning of shift catalyst                               | 3          | 2        | 6                     | Change feedstock; Additives; increase temperature; use sour shift catalyst |
| C4          | Carbon deposites on shift catalyst                                | 2          | 1        | 2                     | Increase steam injection                                                   |
| C5          | COS hydrolysis insufficient                                       | 2          | 2        | 4                     | Change catalyst; increase temperature                                      |
| C5          | Tar removal insufficient                                          | 2          | 2        | 4                     | Add additional tar removal step                                            |
| C6          | H <sub>2</sub> S removal insufficient                             | 1          | 2        | 2                     | Improve NaOH scrubber efficiency; add CuO-adsorber                         |
| C7          | (Light) Tar condensation in compression unit                      | 2          | 2        | 4                     | Add additional tar removal step                                            |
| S1          | Insufficient CO conversion rate                                   | 2          | 1        | 2                     | Increase tail gas recycling; change catalyst                               |
| S2          | Catalyst poisonning                                               | 1          | 2        | 2                     | Improve syngas cleaning                                                    |
| S3          | Insufficient cooling                                              | 2          | 2        | 4                     | Improve reactor design                                                     |
| S4          | Blocking of FT-product condensors                                 | 2          | 1        | 2                     | Raise condensation temperature; use multi stage condensation               |
| S5          | Carbon deposites on Steam Methane Reformer                        | 2          | 2        | 4                     | Add pre-reformer stage; increase steam content                             |
| Likelihood: | 1 = very unlikely                                                 |            |          |                       |                                                                            |
|             | 2 = could occur                                                   |            |          |                       |                                                                            |
|             | 3 = very likely                                                   |            |          |                       |                                                                            |
| Severity:   | 1 = plant can be operated at lower efficiency or lower availabili | ty         |          |                       |                                                                            |
|             | 2 = process step has to be modified or equipment redesigned       |            |          |                       |                                                                            |
|             | 3 = total process does not work and has to be changed             |            |          |                       |                                                                            |

### 4. Conclusions

Technology risks were identified for each section of the technology chain. These risks were classified regarding likelihood and severity and a product of both was calculated to get an overall risk factor.

Out of a maximum of risk factor 9, one risk with the risk factor of 6 occurred. All other risks had a factor of 4 or less. Overall risks are not higher than in other  $2^{nd}$  generation biofuel production routes.

Suitable mitigation actions were proposed for each risk.

Some process steps have a lower TRL (5 or 6). Here additional research actions can reduce the technology risks in future plants.

For other process steps with higher TRL suitable specification of equipment and a good quality control during delivery and erection can reduce the risks.

### 5. Disclaimer

The content of this deliverable reflects only the author's view, and the European Commission is not responsible for any use that may be made of the information it contains.