

Energy Systems and Technology Prof. Dr.-Ing. B. Epple Otto-Berndt-Str. 2 64206 Darmstadt / Germany Phone: +49 6151 16 23002 www.est.tu-darmstadt.de

TECHNISCHE UNIVERSITÄT DARMSTADT

Clara

CLARA Project Overview

Jochen Ströhle

2nd Public Workshop 25 April 2023

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No *817841*.

Agenda

09:00 – 09:15	 <u>Introduction</u> Welcome Project Overview 	J. Ströhle (TUDA)
09:15 – 10:45	 <u>Presentations - CLARA</u> Pilot Testing Commercial Process Design Concept Socio- and Techno-Economic Assessment 	CLARA Consortium
10:45 – 11:00	Coffee break	
11:00 – 12:30	 Presentations - External Jet fuel production from residues and wastes via hydrothermal liquefaction: Results and perspectives from the EU projects HyFlexFuel and CIRCULAIR Gasification as key enabling technology for advanced biofuels R&D and commercial application of HTW Gasification 	V. Batteiger (Bauhaus- Luftfahrt) N. Dahmen (ETIP Bioenergy) D. Toporov (GID)
12:30 – 13:30	Lunch	
13:30 – 14:30	 Panel Discussion Enabling the Clean Energy Transition with 2nd Generation Biofuels 	
14:30 - 16:00	 <u>Pilot Plant Visit</u> Introductory presentation on pilot plant Pilot plant visit in small groups 	B. Epple (TUDA)

Overall Concept

residues (wheat straw, pine residue)

leaching, additivation, pelletization

looping gasification fine cleaning, sulphur recovery

synthesis, Hydrocracking

(Gasoline, diesel)

Chemical Looping Gasification

TECHNISCHE UNIVERSITÄT DARMSTADT

- Oxygen for partial oxidation of fuel is provided by metal oxide
- No air separation unit required (→ high energetic efficiency)
- Catalytic conversion of hydrocarbions/tars by metal oxide (→ high syngas quality)
- All CO₂ separated from syngas (\rightarrow negative CO₂ emissions possible)

Objectives

- 1. Develop and test a concept for CLG of biogenic residues
- 2. Develop concepts for pre-treatment of biogenic residues
- 3. Develop and test a **new syngas cleaning technology** to reduce CAPEX and OPEX of syngas treatment by 50 % (compared to Rectisol[™])
- 4. Demonstrate the full process chain using a 1 MW_{th} CLG unit
- 5. Demonstrate and optimize **road transport drop-in biofuels production** via catalytic hydrocracking of FT-wax
- Scale up to industrial size (100 300 MW_{th}, 30,000 100,000 t/y fuel) using adequate models validated at pilot scale (targets see KPIs)
- 7. Estimate the **cost structures** including dynamic cost development due to technological learning, and explore the **market potential** for biofuels by CLG
- 8. Assess **risks** and suggest possibilities for risk mitigation
- 9. Determine **impact** of biomass-to-fuel chain on **environment** and **society**

Project Structure

WP8 Dissemination and Exploitation (TUDA) WP9 Management (TUDA)

Consortium

Chara 🍕

Questions?

• Write in chat (to all or to Paul Dieringer)

Thank you for your participation

TECHNISCHE UNIVERSITÄT DARMSTADT

Key Performance Indicators

TECHNISCHE UNIVERSITÄT DARMSTADT

KPI	Target
Carbon utilization	> 33 %
Energetic fuel efficiency	> 55 %
Fuel cost	< 0.7 €/I
CO ₂ emissions	< 0
Cold gas efficiency	> 82 %
Carbon conversion	> 98 %

Key Performance Indicators

KPI	Definition	Target	Means of verification
Carbon	Fraction of carbon in initial	> 33 %	Carbon mass balance of the entire
utilization	feedstock that is converted to the		BtL chain by full-chain tests and
	fuel		process simulations
Energetic	Fraction of chemical energy in	> 55 %	Mass and energy balance of entire
fuel	initial feedstock that is		BtL chain by full-chain tests and
efficiency	transferred to the fuel		process simulations
Fuel cost	Cost for production of transport	< 0.7 €/I	Techno-economic assessment of
	fuel considering revenues from		entire BtL chain
	sale of power, heat, CO ₂ , and		
	others		
CO ₂	Net emissions of CO ₂ per	< 0	Life cycle analysis of entire BtL
emissions	produced fuel considering CO ₂		chain
	storage		
Cold gas	Fraction of chemical energy in	> 82 %	Mass and energy balance of
efficiency	feedstock that is transferred to		gasifier by pilot tests and
	syngas in the gasifier		process/CFD simulations
Carbon	Fraction of carbon in feedstock	> 98 %	Carbon mass balance of gasifier
conversion	that is converted to gas in the		by pilot tests and process/CFD
	gasifier		simulations