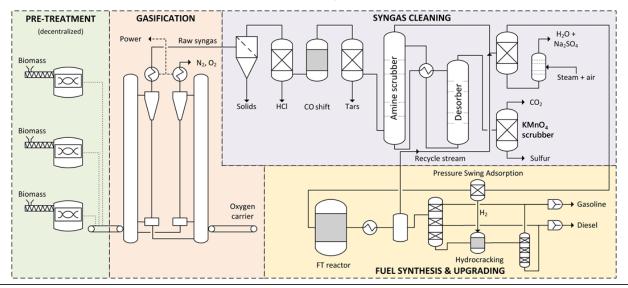
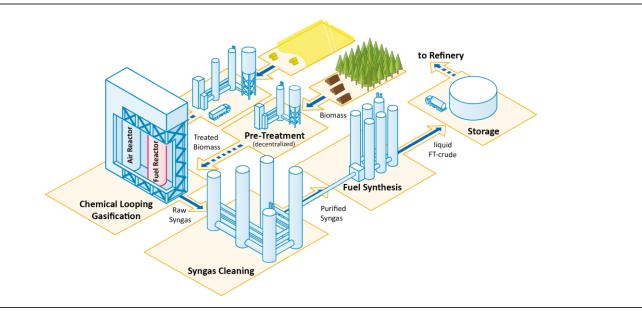

Upscaling the CLARA technology

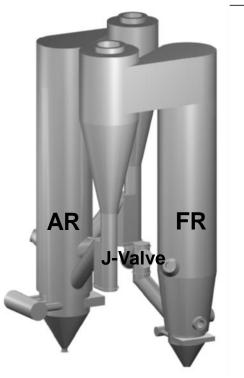
Design and simulation of a 200 MW_{th} BtL plant


Frank Buschsieweke, Nikos Detsios

Introduction

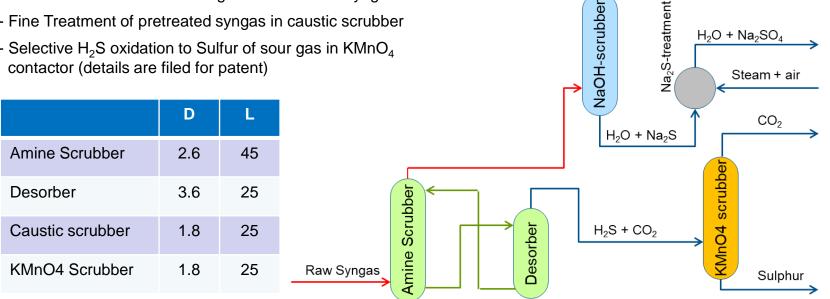

- Upscaling of the whole process chain from 1 MW_{th} to 200 MW_{th}
- Estimation of process performance by simulation

Part 1: Plant design



Layout of a 200 MW_{th} gasifier, syngas cleaning and fuel synthesis

Layout of a 200 MW CLG Unit



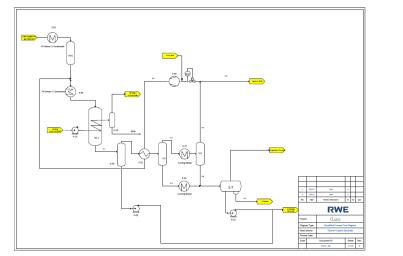
	Fuel Reactor	Air Reactor
Inner diameter	4.74 m	4.51 m
Gas Velocity	5.5 m/s	4.5 m/s
Riser height	25.75 m	22.72 m
Cyclone inner diameter	4.84 m	4.07 m
Total height	31.25 m	30.25 m
Foot print of the whole assembly	16.5 x 13.4 m	

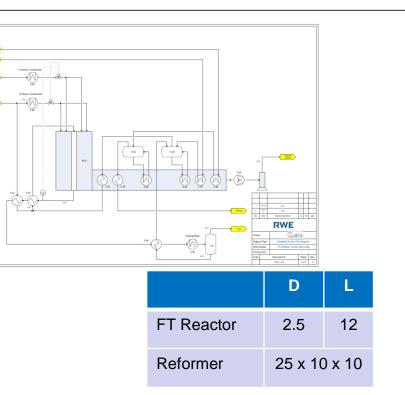
Gas Treatment Unit

Gas Treatment consists of:

- Amine scrubber and amine regenerator for raw Syngas
- Fine Treatment of pretreated syngas in caustic scrubber
- Selective H₂S oxidation to Sulfur of sour gas in KMnO₄ contactor (details are filed for patent)

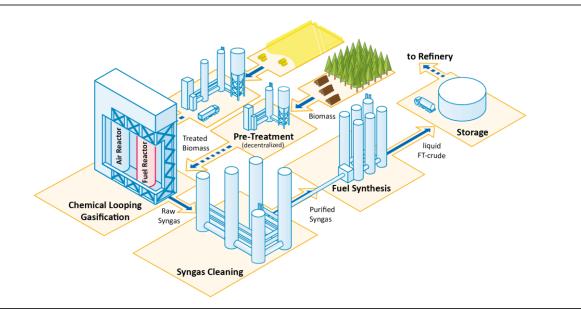
 $H_2O + Na_2SO_4$


Clean Synthesis Gas

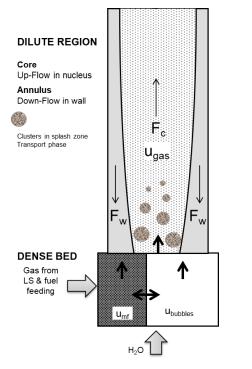

FT-Synthesis Unit & Steam Reformer

Synthesis Unit consists of:

- Low Temperature FT Synthesis in fixed bed reactor -
- Reforming of formed short chain hydrocarbons -



RWE (Lara


Part 2: Performance estimation

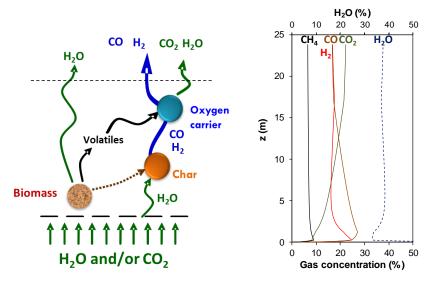
Results of full-chain process simulations of the 200 MW_{th} CLARA concept

Gasifier Unit – Model overview

Model

- o fluid-dynamics
- biomass devolatilization & gasification
- oxygen carrier redox kinetics
- Water-gas shift reaction: kinetics

Input data


- Reactor geometry
- Operating conditions (T, λ, circ., S/B)
- Properties of OC and biomass
- Kinetics of reactions

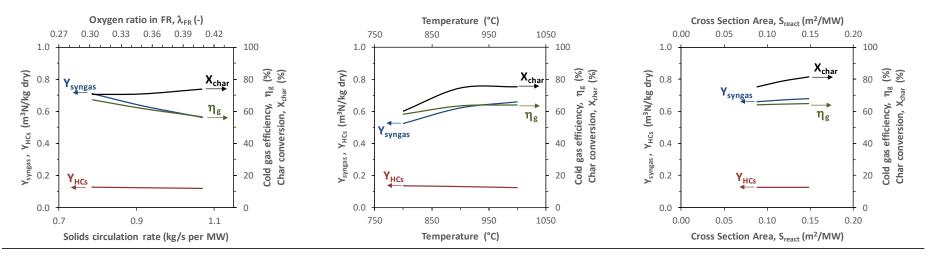
Output data

- Axial profiles of gas and solids
- Pressure drop
- Syngas composition
- Syngas and HC yields
- OC and char conversion
- Cold gas efficiency
- Carbon capture

Reactions in FR

Gas concentration profiles

Gasifier Unit – Simulation results


Parametric evaluation of the main operating variables

- Reactor temperature
- Oxygen ratio (λ) solid circulation flowrate
- Steam to biomass ratio (S/B)
- Cross sectional area (m²/MW)
- Process control mode

Oxygen ratio

Reactor temperature

Cross section area

27.04.2023 | Chemical Looping gAsification foR sustainAble production of biofuels - CLARA | Nikos Detsios | 9

Gasifier Unit - Expected gasifier KPIs

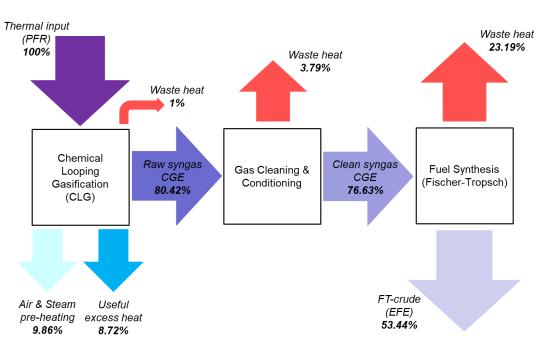
Process optimization (0.18 m²/MW)

Optimum operating conditions in the gasifier are derived from the simulation. Mass and energy balances to the whole unit (air & fuel reactor) are necessary to know the temperature for the autothermal operation of each unit.

Fuel reactor temperature	°C	950	900
Steam to biomass ratio	kg/kg dry biomass	1.2	1.2
Solid circulation flowrate	kg/s MW	0.95	0.86
Solid inventory	kg/MW	400	400
Mean residence time	S	420	465
Oxygen to fuel ratio in AR		0.41	0.41
Oxygen to fuel ratio in FR		0.34	0.33
Syngas yield	Nm ³ /kg biomass	0.68	0.65
HC yield	Nm ³ /kg biomass	0.13	0.14
Cold gas Efficiency	%	65.6	66.0
CO ₂ capture efficiency	%	93.5	91.3
Char conversion	%	80.8	74.4
Gas composition			
СО	Vol%	9.7	12.8
H ₂	Vol%	13.5	9.8
CO ₂	Vol%	16.3	12.6
H ₂ O	Vol%	55.9	60.1
CH ₄	Vol%	4.5	4.7

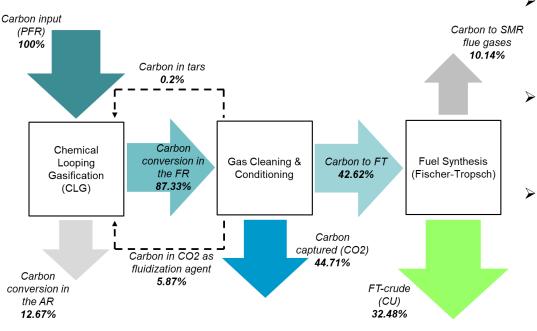
Key Performance Indicators (KPIs)

RE FOR ARCH & TECHNOLOGY


- Cold Gas Efficiency (CGE): It is the fraction of the chemical energy in the initial feedstock that is transferred to syngas in the CLG unit
- Carbon Conversion (CC): It is the carbon conversion in the CLG unit considering both reactors (FR & AR) combined
- Carbon Utilization (CU): It is the fraction of carbon in initial feedstock that is converted to the final liquid fuels
- Energetic Fuel Efficiency (EFE): It is the fraction of the chemical energy in initial feedstock that is converted to the final liquid fuels

KPI	Full-scale process simulations	Project initial targets
CGE (%)	80.42	82
CC (%)	100	98
CU (%)	32.48	33
EFE (%)	53.44	55

Process chain - Energy Balance


IOLOGY Jara

- A Cold Gas Efficiency (CGE) of around 80% is achieved. The remaining energy is used for preheating of the inlet streams (~10%) and for further steam generation (~9%) that can be used in other plant units (e.g. gas cleaning).
- The main heat losses of the process are observed in the FT-synthesis unit (~23%), due to the highly exothermic Fischer-Tropsch reactions as well as the partial syngas combustion for steam reforming of longer hydrocarbons in the fuel synthesis unit.
- An Energetic Fuel Efficiency (EFE) around 53% is achieved, meaning that more than half of the chemical energy contained in the initial feedstock is found in the final product of the process (i.e. FT-crude).

Process chain - Carbon Balance

- The majority of carbon (~87.5%) contained in the solid feedstock is transferred to the produced syngas, while the remainder (~12.5%) is combusted in the air reactor of the CLG unit.
- A high percentage of carbon (~45%) is captured in the form of pure CO₂ in the acid gas removal unit. A small part of the captured CO₂ is recycled back to the CLG unit along with any tars removed via oil washing.
- The carbon left in clean syngas (i.e. CO & CH₄) is directed to the FT-synthesis unit. There, partial syngas/carbon combustion for the thermal assistance of steam reforming takes place (~10%), while the remaining carbon is found in the valuable FT products (liquid hydrocarbons), yielding an overall Carbon Utilization (CU) around 32.5%.

Conclusion

- Design of commercial scale 200 MW_{th} plant
 - Detailed layout of gasifier unit
 - Conceptual design of gas cleaning and fuel synthesis units

- Performance estimation by simulation
 - Plant performance meets expected KPI

```
> Next step: 10-30 MW<sub>th</sub> demo unit
```


Thank you for your attention

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No *817841*: Chemical Looping gAsification foR sustainAble production of biofuels (CLARA).