

Gasification as key enabling technology for advanced biofuels

Nicolaus Dahmen ETIP-B WG 2 Clara public workshop April 25, 2023 TU Darmstadt

The European integrated SET plan

- The integrated European Strategic Energy Technology Plan (SET plan) identifies 10 actions for R&I, biomass related ones:
 - Integrating renewable technologies
 - Reducing costs of technologies
 - Resilience and security of energy systems
 - Energy efficiency in industry
 - Renewable fuels and bioenergy
 - Carbon capture and storage
- European technology and innovation platforms (ETIP) support the implementation of the SET plan bringing together industry and researchers in key area in EU countries.
- In addition, the SET plan consists of the European Energy Research Alliance (EERA) and the SET plan Information System (SETIS)

ETIP Bioenergy

- Stakeholder forum for renewable fuels and bioenergy
- Focusing on research, development and deployment (RD&D)
- Recognised by the European Commission as key actor Important tool: the strategic research agenda (SRIA)
- Structure
 - Steering Committee
 - WG1 Biomass availability
 - WG2 Conversion
 - WG3 End-Use
 - WG4 Policy and Sustainabilty
 - Biomethane Task Force

SRIA update

- Goal: Provide the basis for EU's RD&D on renewable fuels and bioenergy
- Content:

4

- Latest technological developments,
- Weaks and strengths of different technologies, recommendations for their development and deployment, outlook to beyond 2030
- Biomass availability
- Deployment of renewable fuels and bioenergy so far
- Specific markets: e-fuels, aviation, shipping, biomethane
- Elaborated by a series of online expert work meetings 01-03.2023

ETIP: an open forum to each interested and committed partner

Outlook from SRIA draft revision

- Gasification-based technologies need to contribute if we are to meet targets in the transport sector
- Advanced biofuel target for 2030 already require a few hundred new advanced biofuel production plants at average size of 50.000 - 100.000 t/y (beyond HVO)
- Specific comments to gasification based process routes
 - Gasification technology has to adapt to different feedstocks, e.g. waste
 - Downstream technology should be chosen with respect to the CO:H₂ ratio
 - Consider implementation of renewable hydrogen
 - Syngas fermentation to new products
 - Hydrogen production
 - Solutions for logistics of feedstocks are needed

Examples from our own work

Renewable hydrogen integration

Expectations at the example of biomass gasification based fuels to compensate for hydrogen deficit and by-produced CO₂

Lignocellulose gasification	$C_6H_8O_4 + 2 O_2 \rightarrow 5.2 \text{ CO} + 2.8 H_2 + 0.8 \text{ CO}_2 + 1.2 H_2O$
Water-gas-shift	$2.5 \text{ CO} + 2.5 \text{ H}_2\text{O} \implies 2.5 \text{ CO}_2 + 2.5 \text{ H}_2$
Sum after shift	$C_6H_2O_4 + 2O_2 \rightarrow 2.7 \text{ CO} + 5.3 H_2 + 3.3 \text{ CO}_2$
BtL synthesis	2.7 CO + 5.3 H ₂ → 2.7 "CH ₂ " + 2.7 H ₂ O
RWGS	$3.3 \text{ CO}_2 + 3.3 \text{ H}_{2,\text{ext}} \leftrightarrows 3.3 \text{ CO} + 3.3 \text{ H}_2\text{O}$
PtL synthesis	$3.3 \text{ CO} + 6.6 \text{ H}_{2,\text{ext}} \rightarrow 3.3 \text{ "CH}_2 \text{"} + 3.3 \text{ H}_2 \text{O}$
PBtL	$C_6H_8O_4 + 2 O_2 + 10 H_{2,ext} \rightarrow 6 "CH_2" + 8 H_2O$
Water electrolys	is $10 H_2 O \Rightarrow 10 H_2 + 5.5 O_2$

1. H₂ boosted bioliq process with FT synthesis

- Thermal fuel capacity: 110 MW_{th}
- Share of electricity costs: 50.7 %
- Full heat integration and export

	BtL	PBtL	PtL, max
Product capacity / MW	32.6	123.3	123.5
Carbon conversion	24.9 %	97.7 %	99 %
Fuel efficiency	29.8 %	45 %	46.2 %
Overall efficiency	63.0 %	56.6 %	62.4 %
Net production cost / EUR/L _{ge}	2.05	2.15	2.75

F. Albrecht et al., Fuel 194 (2017)

Production cost estimate

 Meta-study on production costs of FTfuels from wood biomass via the bioliq process

N. Dahmen, J. Sauer, Processes (2021)

Options for hydrogen feed-in

Biomass gasification processes

- Carbon dioxide capture and reverse-water-gas-shift reaction
- Addition of hydrogen to gasification of biomass
- Addition of hydrogen to fuel synthesis

reFuels 2. H₂ boosted biolig process with MtG Addition of H₂ to synthesis

11

H₂ boosted bioliq process with MtG Addition of H₂ to synthesis

- Gasoline production from biomass based syngas (CO/H₂ ≅ 1)
- Simulations with kinetic models validated by data from industrial plants
- In total, synthesis via MeOH can most benefit from H₂ addition, while fuel via DME performs better without H₂ supply.

M. Ebrahimi, KIT-IKFT

Nahpha energy and carbon recovery

reFuels

1: via one step MeOH synthesis

- 2: via one step MeOH + external H₂
- 3: via one step DME synthesis
- 4: via one step DME + external H₂
- 5: two step MeOH/DME synthesis

H₂ boosted bioliq process with MtG Addition of H₂ to synthesis

- Gasoline production from biomass based syngas (CO/H₂ ≅ 1)
- Simulations with kinetic models validated by data from industrial plants
- In total, synthesis via MeOH can most benefit from H₂ addition, while fuel via DME performs better without H₂ supply.

M. Ebrahimi, KIT-IKFT

Nahpha energy and carbon recovery

reFuels

1: via one step MeOH synthesis

- 2: via one step MeOH + external H₂
- 3: via one step DME synthesis
- 4: via one step DME + external H₂
- 5: two step MeOH/DME synthesis

H₂ boosted bioliq process mit MtG Addition of H₂ to synthesis

- Gasoline production from biomass based syngas (CO/H₂ ≅ 1)
- Simulations with kinetic models validated by data from industrial plants
- In total, synthesis via MeOH can most benefit from H₂ addition, while fuel via DME performs better without H₂ supply
- DME route promises to be a good compromise in terms of costs!

M. Ebrahimi, KIT-IKFT

reFuels

1: via one step MeOH synthesis

- 2: via one step MeOH + external H₂
- 3: via one step DME synthesis
- 4: via one step DME + external H₂
- 5: two step MeOH/DME synthesis

3. Syngas fermentation to C_4/C_8 hydrocarbons

Energy balance from syngas fermentation Addition of H₂ to fermentation gas

www.etipbioenergy.eu

Project Partners

RI. SE

Contact secretariat@etipbioenergy.eu

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement no. 101075503